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Abstract Oscillating point absorber buoys may rise out

of the water and be subjected to bottom slamming upon re-

entering the water. Numerical simulations are performed to

estimate the power absorption, the impact velocities and

the corresponding slamming forces for various slamming

constraints. Three buoy shapes are considered: a hemi-

sphere and two conical shapes with deadrise angles of 30�
and 45�, with a waterline diameter of 5 m. The simulations

indicate that the risk of rising out of the water is largely

dependent on the buoy draft and sea state. Although

associated with power losses, emergence occurrence

probabilities can be significantly reduced by adapting the

control parameters. The magnitude of the slamming load is

severely influenced by the buoy shape. The ratio between

the peak impact load on the hemisphere and that on the 45�
cone is approximately 2, whereas the power absorption is

only 4–8% higher for the 45� cone. This work illustrates

the need to include slamming considerations aside from

power absorption criteria in the buoy shape design process

and the control strategy.
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List of symbols

b Wet radius at the instantaneous free water surface

(m)

bhyd Hydrodynamic damping coefficient (kg/s)

bext External damping coefficient (kg/s)

Cs Slamming force coefficient (–)

Cw Wetting factor (–)

d Draft (m)

f Frequency (Hz)

fi Frequency component (Hz)

fp Peak frequency (Hz)

F Force (N)

Fex Exciting force (N)

g Gravitational acceleration (m/s2)

h Drop height (m)

Hs Significant wave height (m)

k Hydrostatic restoring coefficient (kg/s2)

Kr Radiation impulse response function (kg/s2)

kSS Dimensionless value used to describe impact force

(Shiffman and Spencer) (–)

m Body mass (kg)

ma Added mass (kg)

ma1 High-frequency limit of the added mass (kg)

msup Supplementary mass (kg)

nf Number of frequencies (–)

j Imaginary unit

p Pressure (bar = 105 Pa)

pabs Absorbed power (W)

r Radial coordinate (m)

R Radius of hemisphere (m)

S Spectrum (m2s)

t Time (s)

Tp Peak period (s)

U Entry velocity (m/s)

z Vertical coordinate (m)
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zA,sign Significant amplitude of the buoy position (m)

b Deadrise angle (� or rad)

f Water elevation (m)

q Mass density of fluid (kg/m3)

x Angular frequency (rad/s)

/z Phase angle of the buoy position (rad)

r Spectral width parameter (–)

Subscripts

A Amplitude

s, sign Significant

1 Introduction

Wave energy is a renewable energy source that is becoming

one of the players in the green energy market. Several wave

energy converters (WECs) have been invented, among them

point absorbers. These devices consist of oscillating, float-

ing bodies with dimensions that are much smaller than the

incident wave lengths. The bodies generally have a higher

natural frequency than the incident wave frequencies and

are therefore often tuned to the characteristics of the inci-

dent waves to augment power absorption. This tuning

increases the body motion and consequently also the

probability of it rising out of the water. When they re-enter

the water, the buoys may be subjected to bottom slamming,

which is typically associated with large impact pressures

and forces. Slamming pressures are very localized in space

and time. They are higher and more markedly peaked for

smaller (local) deadrise angles and for larger drop heights,

which implies larger impact velocities.

So far, research on point absorbers has mainly been

focused on power absorption maximisation, for example by

optimising the buoy shape and improving the control

strategy. In order to determine an efficient practical tuning

strategy and an optimal shape, however, slamming con-

siderations need to be taken into account as well.

Figure 1 presents a schematic view of a conical point

absorber subjected to water impact. The deadrise angle b is

the angle between a meridian of the body surface and the

horizontal free water surface. When the point absorber

penetrates the water, the water surface is no longer planar;

it rises along the body surface. If the fluid is assumed to be

incompressible, the law of conservation of mass requires

that the volume above z = 0 equals the displaced volume

for z B 0. A jet flow is noticed that generally ends in a

spray. The peak pressures occur in the outer domain, close

to the spray roots. The pressure in the jet flow is very close

to atmospheric pressure. For this reason, the rise in water

level is very often modelled in a simplified way, focussing

on the outer domain and neglecting the jet stream and spray

roots (inner domain).

Slamming phenomena may cause local plastic defor-

mation of the material, and have resulted in ship losses in

extreme load cases [1]. However, both the extreme load

cases and the operational conditions under which regular

bottom slamming occurs, resulting in fatigue of the mate-

rial, are important. Hence, it is important to assess how the

occurrence probability of slamming depends on the wave

climate, power take-off (PTO) and control system. For

completeness, we should mention that bottom slamming is

not only of importance in point absorber design; it is also

important in relation to lateral slamming (wave slamming)

of the buoys. The work of Wienke and Oumeraci [2], who

experimentally investigated impact forces on slender cyl-

inders due to plunging breaking waves, can be used as a

first approximation of wave slamming forces on point

absorbers.

In this work, we first illustrate the influence of slamming

restrictions on the power absorption. A brief literature

review of methods used to calculate the impact loads on

cones and hemispheres is then presented. Finally, the

emergence occurrence probabilities and the distributions of

impact velocities and forces will be given for several

examples.

2 PTO control to decrease bottom slamming

The occurrence probability of slamming and the associated

impact loads can be decreased by influencing the control

parameters of the buoy. Either the external damping

applied to the buoy to extract power can be increased, the

buoy can be detuned, or a combination of both can be

applied. However, these measures result in power absorp-

tion losses, as will be illustrated in this section. Three

shapes are considered: two cones with deadrise angles of

45� and 30�, respectively, and a hemisphere. All bodies

have a cylindrical upper part that is submerged by 0.50 m

in the equilibrium position. The waterline diameter, D, is

5.00 m, as indicated in Fig. 2. The equilibrium draft

is 3.00 m for the 45� cone and the hemisphere, and it is

1.94 m for the 30� cone. The shapes and their corre-

sponding masses are presented in Fig. 2. In practice, the

edges at the transition between the conical and cylindrical

parts are preferably rounded to reduce turbulence effects.

Fig. 1 Schematic of an impacting body
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Three sea states are defined: (1) Hs = 1.25 m - Tp =

5.98 s, (2) Hs = 2.75 m - Tp = 7.78 s, (3) Hs = 4.25 m

- Tp = 9.10 s, where Hs is the significant wave height and

Tp is the peak period. The first sea state represents a rather

small wave, which can be regarded as a minimum thresh-

old to produce electricity. In the second sea state the sig-

nificant wave height instead has the order of magnitude of a

design wave, and most likely has a high probability of

occurrence in the areas developers are currently focussing

on. It is assumed that the point absorbers are still in

operation in the third, more energetic sea state. In storm

conditions, however, point absorber devices generally stop

producing electricity and switch to a safety mode in which

the point absorbers are protected against bottom slamming

or breaking wave slamming. This can be realized by

completely submerging the buoys or by lifting them up to a

certain level above the water surface [3].

The wave spectrum is determined using the parameter-

ized JONSWAP spectrum [4] with a peak enhancement

factor c = 3.3.

Employing linear theory, the equation of motion for the

buoy in monochromatic incident waves can be expressed

as:

�x2 mþmaþmsup

� �
ẑþ jx bext þ bhyd

� �
ẑþ kẑ¼ F̂ex: ð1Þ

The position of the buoy is given by z ¼ ReðẑejxtÞ; where x
is the angular frequency, j is the imaginary unit, t is the time,

and ẑ ¼ zAej/z is the complex amplitude of z. The mass of

the buoy is indicated by the symbol m, and the hydrostatic

restoring coefficient by k. The frequency-dependent

hydrodynamic coefficients of added mass and damping are

represented by ma and bhyd, respectively. The complex

amplitude of the heave exciting force is denoted by F̂ex: The

hydrodynamic parameters ma, bhyd and F̂ex are calculated

with the boundary element method (BEM) software WA-

MIT [5]. A linear external damping coefficient, bext, simu-

lates the PTO. A tuning force proportional to the

acceleration has been implemented by means of the term

with the supplementary mass, msup [6]. The introduction of

the supplementary mass enables a practical implementation

of phase control in a linear model. A schematic

representation is given in Fig. 3. By applying the supple-

mentary mass to both sides of a rotating belt, the inertia of

the device can be varied without changing the draft of the

buoy. The tuning force could also be delivered by the

generator, but this approach is discouraged, particularly

when the tuning force required is much larger than the

damping force, as discussed in Sect. 4. Phase control may

also be achieved with a flywheel mechanically coupled to

the buoy’s vertical motion, or with latching control [7, 8].

Using the superposition principle, the time-averaged

power absorption, Pabs, can be obtained:

Pabs ¼
Xnf

i¼1

1

2
bextx

2
i z2

Ai; ð2Þ

where nf is the number of frequencies considered

(nf = 150). The maximum panel size of the body mesh is

0.15 m, which is sufficiently small compared to the

wavelength corresponding to the components with the

highest frequencies [fi [ (0.035 Hz ...0.333 Hz)].

Fig. 2 Test shapes—submerged part in equilibrium: cone with deadrise angle of 45�, cone with deadrise angle of 30�, and hemisphere

(dimensions in m)

Fig. 3 Schematic representation of a heaving point absorber with a

supplementary mass and external damping
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Generally, the external damping force and tuning force

are optimized in order to maximize the power absorption

[9, 10]. To avoid excessive slamming, slamming con-

straints are taken into account during the optimisation

procedure, which requires that the significant amplitude of

the position of the buoy relative to the free water surface, f,

is limited to a fraction a of the buoy draft:

ðz� fÞA;sign\ad: ð3Þ

If the spectrum of the relative position is defined as

Si = (zi - fi)
2

A/(2Df), the significant amplitude of the

relative buoy position is obtained with

ðz� fÞA;sign ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xnf

i

SiDf

vuut : ð4Þ

The slamming restriction in Eq. 3 must be fulfilled for each

sea state. This may necessitate adapting the control

parameters msup and bext compared to unconstrained con-

ditions. The optimal control parameters are obtained with

an exhaustive search method. The choice of the slamming

restriction factor a in Eq. 3 has a direct impact on the

probability of emergence occurring. When a is chosen to

be equal to 1, emergence events will still be allowed for the

top 13.5% of the highest waves, assuming that the wave

and body displacement amplitudes are Rayleigh distrib-

uted. In small waves, the slamming criterion does not

influence the optimal values of the control parameters.

However, for higher waves, less optimal values of the

control parameters bext and msup must be chosen in order to

fulfill the slamming criterion. This is illustrated for the 45�
cone in Figs. 4, 5 and 6, which show the time-averaged

absorbed power as a function of the control parameters bext

and msup. In Fig. 4, the power absorption is given for the

second sea state (Hs = 2.75 m - Tp = 7.78 s), together

with three slamming contour lines with a values of 0.75,

1.00 and 1.50, respectively. The area enclosed by the

contour lines has to be avoided to fulfill the slamming

restriction, resulting in less power absorption for stricter

slamming constraints. For the least stringent constraint

(a = 1.50), the maximum time-averaged power absorption

in the remaining area is 115 kW. This drops to 96 kW for

the intermediate constraint (a = 1.00), and the maximum

absorbed power equals 79 kW for the most stringent con-

straint (a = 0.75). The maximum values are indicated with

black circles.

Two velocity contour lines of 2 and 4 m/s are also

shown in Fig. 4. These lines represent equally significant

values of the vertical buoy velocity relative to the vertical

wave velocity. The significant amplitude of the relative

velocity could also be used to formulate a slamming con-

straint instead of the relative displacement amplitude. The

latter restriction is directly linked to the slamming

occurrence probability, whereas the relative velocity con-

straint is related to the pressures and forces.

It can be observed from the graph that the slamming

restrictions are mainly fulfilled by increasing the damping,

and only to a lesser extent by decreasing the supplementary

mass. Table 1 presents the time-averaged power absorption

values for the three shapes per sea state and for different

levels of the slamming restriction factor a. The power

absorption numbers presented are the maximum values that

can be obtained when satisfying the slamming restriction,

according to Eq. 3. The values that could be theoretically

Fig. 4 Power absorbed (kW) as a function of the control parameters,

bext and msup, by the 45� cone for sea state 2 (Hs = 2.75 m - Tp =

7.78 s), along with slamming restrictions (contour lines)

Fig. 5 Power (kW) absorbed as a function of the control parameters,

bext and msup, by the 45� cone for sea state 1 (Hs = 1.25 m - Tp =

5.98 s), along with slamming restrictions (contour lines)
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absorbed if no restrictions are included (a = ?) are also

shown. However, these values and those associated with

weak slamming constraints do not always represent prac-

tically achievable solutions. Furthermore, the power

absorption numbers do not take into account losses due to

mechanical friction, turbulent losses, turbine and generator

losses, or any other losses in the conversion system, and are

thus not equal to the electrical power produced.

Figure 5 shows the power absorption for the first sea

state (Hs = 1.25 m - Tp = 5.98 s). None of the slamming

constraints exerts an influence on the optimal tuning and

damping parameters. The maximum power absorption

value (17 kW) can be achieved while slamming phenom-

ena seldom occur.

Figure 6 presents the power absorption and slamming

contour lines for the most energetic sea state (Hs =

4.25 m - Tp = 9.10 s). Theoretically, the dark red col-

oured area, the resonance zone, leads to the highest power

production. However, this zone requires very large tuning

forces on the one hand and is associated with extremely

high buoy displacement and velocity amplitudes on the

other. Therefore, for practical cases, this zone is not the

target area in large waves. In order to satisfy the restric-

tions, not only must the damping be increased but the

tuning forces must also be considerably decreased. The

absorbed power is largely dependent on the level of

slamming that is allowed. The optimal power values drop

from 221 to 162 and 125 kW, respectively, for the weakest

to the intermediate and most stringent restrictions.

For comparison, the power absorption in the interme-

diate sea state (Hs = 2.75 m - Tp = 7.78 s) is shown in

Figs. 7 and 8 for the hemisphere and the 30� cone,

Fig. 6 Power (kW) absorbed as a function of the control parameters,

bext and msup, by the 45� cone for sea state 3 (Hs = 4.25 m - Tp =

9.10 s), along with slamming restrictions (contour lines)

Table 1 Power absorbed (kW) by the three shapes for the three sea

states and for different slamming restrictions

a Sea state

45� cone Hemisphere 30� cone

1 2 3 1 2 3 1 2 3

0.75 17 79 125 16 75 119 18 55 83

1.00 17 96 162 16 91 155 18 72 110

1.50 17 115 221 16 108 211 18 96 161

? 17 118 317 16 111 302 18 121 326

Fig. 7 Power absorbed (kW) as a function of the control parameters,

bext and msup, by the hemisphere for sea state 2 (Hs = 2.75 m - Tp =

7.78 s), along with slamming restrictions (contour lines)

Fig. 8 Power absorbed (kW) as a function of the control parameters,

bext and msup, by the 30� cone for sea state 2 (Hs = 2.75 m - Tp =

7.78 s), along with slamming restrictions (contour lines)
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respectively. The results for the hemisphere are very sim-

ilar to those for the 45� cone, although there is a slight

advantage for the 45� cone. The performance of the latter is

between 4 and 8% better than that of the hemisphere for the

same slamming conditions, as illustrated by the power

absorption figures in Table 1. Much larger differences

(between 15 and 30%) are observed for the 30� cone. For a
equal to 1.5, the power absorption is 96 kW; for a values of

1 and 0.75, the power absorption drops to 72 and 55 kW,

respectively (see Table 1). For the same a values as for the

other shapes, the constraints are much stronger for the 30�
cone shape, since the draft d is smaller. Because of its small

draft, the buoy will easily lose contact with the water

surface and slam. This is why the slamming constraint

needs to be stricter in this case to allow the same level of

slamming as for the other shapes, which is equivalent to

using the same value of a. Alternatively, if the same

absolute restriction is imposed on the relative significant

position of the buoy, i.e. the same value of a�d, the 30�
cone will emerge much more frequently than the other

shapes. However, the power absorption will be of the same

order of magnitude or even slightly higher, since it benefits

from large exciting forces due to its small draft. An

example is given for a = 2.3 for the 30� cone. This value

of a implies a restriction of approximately 4.5 m on the

maximum relative significant amplitude of the buoy posi-

tion and corresponds to an a value of 1.5 for the 45� cone

and hemisphere. The power absorption in this case is

117 kW for the 30� cone compared to 115 and 106 kW for

the 45� cone and hemisphere, respectively. These numbers

have to be treated with caution, since this example repre-

sents a case where extremely high slamming rates and buoy

motions occur, as will be shown later, which violate the

assumptions of linear theory. Contrary to Figs. 4 and 7 for

the 45� cone and hemisphere, respectively, the two velocity

contour lines in Fig. 8 enclose a relatively limited area

compared to the displacement contour lines for the 30�
cone. Hence, when slamming constraints are formulated,

based on the same velocity contour lines for the three

shapes, this may result in a weaker restriction for the 30�
cone compared to constraints based on the same contour

lines of relative displacement.

The control strategy used in this example optimizes the

tuning and damping coefficients (msup and bext) for a cer-

tain sea state and keeps them fixed during that sea state.

This offers the practical benefit of a relatively simple

control strategy. With a more complex (wave-to-wave)

strategy, the control can be adapted to the instantaneous

water elevation at the position of the buoy and/or the

motion parameters of the buoy. Slamming phenomena can

then be reduced, for example by decreasing the immediate

floater displacement and velocity at time instants where

they might become very large. In this way, slamming can

be diminished without deteriorating the power absorption

too much in instantaneous small and intermediate waves

within a certain sea state. Compared to this method, the

slamming restrictions of the fixed-coefficients control

strategy are rather conservative and consequently so are the

estimated drops in power absorption. However, a wave-to-

wave control strategy is a lot more difficult to realise in

practice: a particularly reliable control system is required,

as well as very reliable predictions of the immediate water

elevation at the position of the buoy and the motion

parameters of the buoy.

How strict a slamming constraint needs to be depends on

the impact loads to which the buoys can be subjected and

the number of slamming events that can be tolerated by the

buoy structure. For this reason, the next sections will focus

on the impact loads on buoy shapes and on the occurrence

probabilities of emergence events.

3 Slamming loads

One of the pioneers in slamming research is Von Karman

[11], who studied water impacts in order to estimate the

pressure on hydroplane floats during sea landings. Further

research was subsequently carried out by Wagner [12]. He

adapted the Von Karman solution by taking into account

the rise in the water level on the body in a simplified way.

Wagner mainly analysed slamming effects on two-dimen-

sional solid bodies. The shapes of these bodies can be

approximated by growing flat plates, which implies that the

Wagner method assumes small deadrise angles in the range

of 4–20� [13]. Furthermore, Wagner’s theory assumes the

potential flow of an incompressible fluid and neglects

gravitational effects. The blunt body approximation

allowed Wagner to use analytical expressions for the

velocity potential and to formulate relatively simple for-

mulae for the pressure distribution on wedges. Based on

this principle, Chuang [14], Toyama [15] and Faltinsen and

Zhao [16] extended Wagner’s asymptotic theory for axi-

symmetric bodies by approximating the body shapes with

rigid, flat discs that have an extending radius. Chuang

developed an analytical expression for the pressure distri-

bution on a cone with a small deadrise angle. In 1997,

Faltinsen and Zhao [16] presented a theory for the entry of

hemispheres and cones with small (local) deadrise angles

into water based on the assumptions behind Wagner’s

theory. Scolan and Korobkin [17] presented analytical

solutions for three-dimensional bodies obtained with the

inverse Wagner method. Nowadays, the Wagner principle

is still used in some numerical solvers, e.g. that of Peseux

et al. [1]. With the current evolution in computer power,

CFD models are also increasingly used for simulations of

slamming phenomena [18–22]. Slamming pressures on
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typical point absorber shapes have been experimentally

investigated by means of drop tests in [23, 24].

In the next paragraphs, a brief nonexhaustive overview

of literature results on slamming loads will be given and

applied to the typical point absorber shapes and dimensions

shown in Fig. 2. The hydrodynamic impact force can be

expressed as:

F3 ¼
d ma1Uð Þ

dt
¼ ma1

dU

dt
þ dma1

dt
U; ð5Þ

where ma1 is the infinite frequency limit of the added mass.

If a constant entry velocity is assumed, the first term in

Eq. 5 vanishes.

Shiffman and Spencer [25] developed a theoretical

formula, as expressed in Eq. 6, for the impact force on a

cone by approximating the cone shape with an ellipsoid:

F3cone ¼
3ma1

Ut 1þ ðma1=mÞð Þ3
U2; ð6Þ

where m is the mass of the cone and U is the initial entry

velocity. The added mass for infinite frequency is

expressed as: ma1 ¼ kssðbÞq Ut tanðp
2
� bÞ

� �3
; where kss is

a nondimensional value between 0 and 3 that depends on

the deadrise angle. For a cone with a deadrise angle

b = 20�, 30� and 45�, kss is 2.24, 1.6 and 1.4, respectively.

Shiffman and Spencer stated that Eq. 6 is a good

approximation up to the penetration depth where F3

attains its maximum value. This theory is based on the

similitude of the flow at different time instants, and thus

assumes an approximately constant entry velocity. This

implies that the mass of the buoy should be much larger

than the mass of the displaced water. Consequently Eq. 6

can be approximated with:

F3cone ¼ 3kssqtan3 p
2
� b

� �
U4t2: ð7Þ

Battistin and Iafrati [26] and Kleefsman et al. [20] found a

good correspondence between their numerical results for a

cone with a constant entry velocity and Eq. 7 of Shiffman

and Spencer.

Miloh [27] analysed the impact on a sphere that satisfies

the exact body boundary conditions. Using a wetting

coefficient, Cw ¼ 1þ f
Ut; of 1.327, he suggests a force F3

for small entry depths and a constant entry velocity of

F3hemisphere ¼ 0:5qpR2U2 5:5
Ut

R

� �ð1=2Þ
�4:19

Ut

R

� � 

�4:26
Ut

R

� �ð3=2Þ
!

: ð8Þ

Faltinsen and Zhao [16] presented analytical formulae

based on the classical Wagner theory for F3 by integrating

the pressure while accounting for the nonpermanent flow

around the expanding disc. Since a constant entry velocity

is assumed, the first term in Eq. 5 drops out, resulting in

Eqs. 9 and 10 for a cone and hemisphere, respectively [16]:

F3cone ¼ 256q
t2U4

ðptanbÞ3
ð9Þ

F3hemisphere ¼ 6
ffiffiffi
3
p

q
ffiffiffiffiffiffiffiffiffiffiffiffi
U5tR3
p

: ð10Þ

These formulae are only valid for small entry depths for the

hemisphere and small deadrise angles for the cone shape,

due to the simplified body boundary condition. A gener-

alization of Wagner’s solution to larger local deadrise

angles has been proposed by Zhao et al. for arbitrary

two-dimensional bodies [28], and has been extended for

axisymmetric bodies in [16, 29] and for arbitrary three-

dimensional bodies in [30]. The main difference from the

classical Wagner method is that the exact body boundary

condition is satisfied.

Figure 9 shows several predictions of the slamming

force coefficient Cs = F3/0.5qpR2U2 on a sphere. The

black dashed line represents Eq. 10 of Faltinsen. The for-

mula derived by Miloh is given as a black solid line. The

analytical expressions are compared with experimental

results from Moghisi and Squire [31] (grey dash-dotted

line), with numerical data from Faltinsen and Zhao [16]

obtained using the generalized Wagner theory (grey dashed

line), and with the results of Battistin and Iafrati [26] (grey

solid line). In the numerical approaches, a constant entry

velocity is assumed, the exact body boundary conditions

are fulfilled, the uprising of the water is accounted for, and

the slamming force coefficients are obtained by pressure

integration. The asymptotic theory clearly overestimates

the force by a large margin after the very earliest stage of

submergence. The numerical results [16, 26] and the ana-

lytical formula from Miloh correspond quite well with the

experimental values of Moghisi and Squire.

Figure 10 compares the impact force on a hemisphere

(R = 2.5 m) with those for two cones with deadrise angles

of 30� and 45� for a drop height of 2 m. Note the large

force magnitude (up to almost 500 kN) for the hemisphere.

Equation 6 of Shiffman and Spencer corresponds well with

the approximation in Eq. 7 during the initial impact phase.

However, a discrepancy gradually appears that becomes

quite large at the maximum impact force. The maximum

value of the hydrodynamic load on the hemisphere is

reached very quickly after submergence, at Ut = 0.41 m,

after which it smoothly decreases. The maximum level for

the 30� cone is attained at a submergence of 0.87 m and for

the 45� cone at 1.75 m. Obviously the deadrise angle of the

cone has a huge influence on the magnitude and rise time of

the impact force.

It must be noted that hydroelastic effects may become

important when the deadrise angle of the body is small, the
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impact velocity is large, and the value of the highest natural

period of the local structure is large [32, 33]. When hydro-

elasticity is significant, the maximum strains associated

with the water impact should be studied directly, rather

than deriving them from design pressures. The hydroelastic

behaviour of point absorber structures is not considered in

this paper.

4 Probability of emergence

For design purposes, it is not only important to know the

magnitude of the slamming loads that are associated with

certain impact velocities, but it is also essential to examine

the occurrence probabilities of these impacts. This aspect is

investigated with a time domain model, by simulating the

point absorber motions in irregular waves and storing the

information on each slamming event. For the three sea

states and the point absorber shapes defined in Sect. 2,

simulations are run with a linear time domain model. Based

on the equations of Cummins [34], the equation of motion

for a heaving point absorber can be expressed in the time

domain as:

½mþ ma;1 þ msup�
d2zðtÞ

dt2
þ bext

dzðtÞ
dt

þ
Z t

0

Krðt � sÞdzðsÞ
ds

dsþ kzðtÞ ¼ FexðtÞ; ð11Þ

where ma, ? is the high-frequency limit of the added mass

and Kr(t) is the radiation impulse response function (IRF).

The radiation IRF has been derived from the frequency

domain hydrodynamic coefficient damping with the

WAMIT F2T utility [5]. To compute the IRF, the hydro-

dynamic parameters must be evaluated for a wide

frequency range. For this reason, the interval used for the

frequency components fi is different from that used

in Sect. 2, i.e. fi [ (0.008 ...1.114 Hz).

In order to solve Eq. 11 directly, the solution of the

convolution integral has to be known at every time step,

which may require considerable CPU time. Therefore, the

impulse response function is approximated by a sum of

exponential functions obtained with Prony’s method, and

the integro-differential equation is transformed into a sys-

tem of ordinary differential equations [35].

Long-crested waves are generated with a duration of

10000 s. This duration is considered to be long enough to

study slamming phenomena. It contains 2011 waves for the

first sea state, 1510 waves for the second sea state and 1333

waves for the third sea state. The simulations are per-

formed with a very small time step (Dt = 0.02 s), since

CPU time was not an issue. The impact velocity when the

body re-enters the water surface has been determined as

well as the number of emergences per hour. In marine

hydrodynamics, it is convenient to consider a minimum

relative impact velocity to determine slamming occurrence

probabilities. This threshold velocity is based on the impact

pressures and forces. A general threshold velocity has not

been considered in this case, since the impact loads are

strongly dependent on the point absorber shape. Therefore,

the probability of emergence has been determined, i.e. the
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chance of rising out of the water, rather than the slamming

probability.

The peak load is derived for each shape from the impact

velocity based on the expressions in Sect. 3. Equation 6 of

Shiffman and Spencer was used for the conical shape and

Eq. 8 of Miloh for the hemisphere.

Attention should be drawn to the fact that the

assumptions of linear theory (small waves and small body

motions) are violated when the buoy leaves the water.

However, in irregular waves, the correspondence between

linear theory and experiments is still satisfactory when

the buoy is operating outside the resonance zone [36].

Since this is generally the case, the linear model can be

used in an acceptable way to predict the emergence

occurrence probability and to estimate the impact veloc-

ities of the buoy. To obtain more accurate results for the

impact velocities, the use of a nonlinear time domain

model is advised for future work, especially from the

perspective of body mechanics rather than wave

mechanics.

Figure 11 shows the number of emergence events per

hour for the three slamming restrictions as a function of the

impact velocity. These results are obtained from simula-

tions with the 45� cone–cylinder shape (cc - b = 45�) in

the second sea state (Hs = 2.75 m - Tp = 7.78 s). The

contribution of the velocity of the surface elevation to the

impact velocity is neglected in these calculations. Hence,

the impact velocity is approximated by the buoy velocity at

re-entry. A significant difference between the restrictions is

observed in both the number of emergences and the mag-

nitude of the impact velocity. The emergence occurrence

probability is defined as the number of emergence events

divided by the number of waves in the wavetrain. Fig-

ure 12 gives the hourly number of emergences as a func-

tion of the peak impact force corresponding to the

estimated impact velocities, according to Eq. 6. This means

that a constant impact velocity is assumed between the

initial time t0 and the time at which the maximum force

occurs. This (conservative) assumption can be justified by

noting the fact that the buoys have considerable mass. The

influence of the slamming restrictions is even more pro-

nounced for the impact forces, since a quadratic relation-

ship exists between the impact velocity and the peak

impact force. However, most of the emergences still occur

with relatively small peak impact forces for the 45� cone.

The results for the third sea state are similar to those for

the second sea state, since the same level of slamming is

allowed by applying the same restrictions. However, the

power losses needed to fulfill these restrictions are much

larger for the third sea state than for the second sea state, as

one can see by comparing the power plots of Figs. 4 and 6.

In Figs. 13 and 14, the distributions for the impact

velocity and peak impact load, obtained according to Eq. 8,

are given for the hemisphere–cylinder shape (hc) in the

second sea state (Hs = 2.75 m - Tp = 7.78 s). As expec-

ted, Fig. 13, showing the velocity distribution of the

hemisphere strongly resembles Fig. 11, which presents the

impact velocities for the 45� cone. Consequently, the total

number of emergences per hour is almost the same in the

two cases for the same a factors. However, the distribution

of peak load is very different for each case. For the 45�
cone, most of the emergence events occur at small forces,

whereas for the hemisphere the number of emergences at

small impact forces is minor, and is compensated by a

significant amount of emergences with higher impact

0 1 2 3 4 5 6 7
0

10

20

30

40

Impact velocity [m/s]

N
um

be
r 

of
 e

m
er

ge
nc

e 
ev

en
ts

/h
ou

r

Cc − β = 45° − H
s
= 2.75m − T

p
= 7.78s

(z−ζ)
A,sign,max

 = 0.75 d = 2.25 m

(z−ζ)
A,sign,max

 = 1.00 d = 3.00 m

(z−ζ)
A,sign,max

 = 1.50 d = 4.50 m

Fig. 11 Number of emergence events per hour as a function of the

impact velocity for the 45� cone, sea state: Hs = 2.75 m, Tp = 7.78 s

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

Peak impact force [kN]

N
um

be
r 

of
 e

m
er

ge
nc

e 
ev

en
ts

/h
ou

r

Cc − β = 45° − H
s
= 2.75m − T

p
= 7.78s

(z−ζ)
A,sign,max

 = 0.75 d = 2.25 m

(z−ζ)
A,sign,max

 = 1.00 d = 3.00 m

(z−ζ)
A,sign,max

 = 1.50 d = 4.50 m

Fig. 12 Number of emergence events per hour as a function of the

peak impact force for the 45� cone, sea state: Hs = 2.75 m,

Tp = 7.78 s

0 1 2 3 4 5 6 7
0

10

20

30

40

Impact velocity [m/s]

N
um

be
r 

of
 e

m
er

ge
nc

e 
ev

en
ts

/h
ou

r

Hc − H
s
=2.75m − T

p
=7.78s

(z−ζ)
A,sign,max

 = 0.75 d = 2.25 m

(z−ζ)
A,sign,max

 = 1.00 d = 3.00 m

(z−ζ)
A,sign,max

 = 1.50 d = 4.50 m

Fig. 13 Number of emergence events per hour as a function of the

impact velocity for the hemisphere, sea state: Hs = 2.75 m,

Tp = 7.78 s

J Mar Sci Technol (2010) 15:119–130 127

123



www.manaraa.com

forces. This is not surprising, since the ratio of the peak

load on the hemisphere (R = 2.5 m) to that on the 45� cone

is 2.0. This kind of graph can be used as an input for

structural design processes. Extreme operational load cases

in energetic waves need to be simulated as well as fatigue

tests in (presumably) smaller waves, as the latter have a

larger occurrence probability. If the occurrence probabili-

ties of several sea states are known, e.g. they are derived

from a scatter diagram, the yearly number of emergences

and their corresponding impact forces can be calculated for

the specific target location. The graphs are also useful for

evaluating the control strategy with respect to slamming

and adapting or optimizing it where necessary, taking into

account the requirements of the structural designers. If the

control is adapted to reduce slamming, power will be lost

but the cost of manufacturing the buoys will benefit from it,

and vice versa. As a consequence, an economic optimum

needs to be found.

Figures 15 and 16 give the hourly number of emergence

events as functions of the impact velocity and peak impact

force, respectively, for the 30� cone in the second sea state,

i.e. Hs = 2.75 m, Tp = 7.783 s. For the same a values as

before, the impact velocities are found to be a bit smaller

than those for the 45� cone. This is compensated by the

larger peak forces on the 30� cone, which are approxi-

mately a factor of 1.5 larger than those on the 45� cone for

the same values of impact velocity, according to Eq. 6 of

Shiffman and Spencer.

Recall that applying the same a values in the formula-

tion of the constraints implies much stricter slamming

constraints for the 30� cone, because its draft is consider-

ably smaller. When the relative significant amplitude of the

30� cone is limited to the same values as the 45� cone and

hemisphere, then emergence will obviously occur a lot

more for the 30� cone due to its small submergence. This is

illustrated in Figs. 15 and 16 with the extra bars coloured

in pale grey. They represent a restriction on the relative

significant buoy amplitude of 2.30d = 4.47 m. This limi-

tation corresponds approximately to the constraint of the

white bars in Figs. 11, 12, 13 and 14. Similarly, the white

bars of Figs. 15 and 16 can be compared with the dark grey

bars of Figs. 11, 12, 13 and 14, as the restrictions on the

relative significant amplitude are 2.92 and 3.00 m,

respectively. There is a huge difference between the

response of the 30� cone and the two other shapes, both

concerning the number of emergences and the impact

velocity. For the least stringent constraint on the 30� cone,

i.e. (z - f)A,sign B 2.30d, the number of emergence events

per hour has risen to a considerable value of 342, which is

equivalent to an emergence occurrence probability of

63.0%. Such situations should be avoided by tuning the

buoy away from resonance, i.e. by decreasing the supple-

mentary mass and increasing the external damping. For

comparison, the buoy rises out of the water only 17 times

per hour with the most stringent constraint (a = 0.75),

corresponding to an occurrence probability of 3.1%. With

the intermediate constraint (a = 1.00), the buoy loses

contact with the water surface approximately 86 times per

hour, corresponding to an occurrence probability of almost

15.8%. In both cases the impact velocities are relatively

small compared to the weaker constraints, as illustrated in

Fig. 13. For a = 1.50, the buoy releases the water about

230 times per hour, which gives a high occurrence proba-

bility of 42.2%. Assuming that the buoy responses are

Rayleigh distributed, the occurrence probabilities would be

2.9, 13.5 and 41.1%, respectively, which are close to the

calculated figures.
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These numbers show that the implementation of slam-

ming constraints can significantly reduce the slamming

occurrence probability. For a constraint with a = 0.75

compared to a = 1.50, the number of emergences is

reduced by a factor of 14, whereas the power absorbed by

the 30� cone is only decreased by 43 and 48% for the

intermediate and energetic sea states, respectively.

Applying the same constraints to the hemisphere and the

45� cone, the power absorption is reduced by only 30 and

43% for the same respective sea states.

It has been shown that a buoy which is controlled

according to very weak constraints (e.g. a = 2.3) is

subjected to excessive slamming. Apart from slamming,

there are other reasons why these control situations should

be avoided, such as the large buoy motions that are

associated with this case. In fact, for practical reasons,

many devices have limitations on the maximum stroke of

the buoy. For a = 2.3, the significant amplitude of the

buoy motion is 4.9 m, which is very large, especially

compared to the incident wave height (Hs = 2.75 m).

Another problem is the very large tuning forces that are

required to obtain this tuning. The significant amplitude

of the tuning force required is 775 kN compared to

117 kN for the damping force to enable power extraction.

Depending on how this tuning force needs to be realised,

e.g. by the generator, this could lead to a very costly

solution.

It should be reiterated at this point that the reliability

of the model can be questioned for the case where the

buoy operates very close to resonance. Nevertheless, the

conclusion remains that such a situation is unrealistic and

will never be aimed for. Also, the restriction where a
equals 1.50, which gives rise to an unwanted high

emergence occurrence probability of above 40%, must be

avoided in practice. Within this context it is concluded

that the theoretical power absorption values for a = 1.5-

?, as mentioned in Table 1, are not practically achiev-

able, except for the smaller sea states where slamming

seldom occurs. The most realistic constraints are the

stricter constraints with a values that are smaller than or

equal to 1. Moreover, smaller control forces and buoy

strokes need to be involved. For an a value of 1 and sea

state 2 (Hs = 2.75 m, Tp = 7.783 s), the significant

amplitude of the buoy motion is 3.3 m and the significant

amplitudes of the tuning and damping forces are 515 and

142 kN, respectively. If the a value equals 0.75, the

significant motion amplitude is 2.47 m and the significant

amplitudes of the tuning and damping forces are equal to

354 and 154 kN, respectively. In order to reduce the

power absorption penalty from the slamming constraints,

it is advisable to increase the draft of the buoy, particu-

larly if the considered structure hardly allows any slam-

ming at all.

5 Conclusion

Point absorbers are generally tuned towards the incident

wave frequencies to increase the power absorption. How-

ever, this may cause heavy slamming, and for this reason the

theoretically optimum control values often represent unre-

alistic solutions. Slamming effects have been investigated

for three sea states and three buoy shapes: two cones with

deadrise angles of 45� and 30�, and a hemisphere with a

waterline diameter of 5 m. For a tuned buoy, the probability

of emergence increases dramatically with increasing wave

height. In very small waves the buoys may absorb the theo-

retical maximum power, while slamming phenomena rarely

occur. In more energetic waves the floater motions become

larger and the buoys rise out of the water very frequently if

they are tuned towards the dominant incident wave fre-

quencies. The risk of slamming can be reduced by adjusting

the control parameters of the buoy, i.e. the tuning and

damping forces. Three different levels of slamming restric-

tions were introduced, which diminished the emergence

occurrence probability to approximately 42, 16 and 3%.

Going from the mildest to the most stringent constraint, the

risk of emergence is reduced by a factor of almost 14, while

the power absorption for the hemisphere and the 45� cone is

only reduced by 30–43% for the intermediate and energetic

sea states, respectively. The probability of emergence is

greatly affected by the buoy draft. The same constraints

reduce the power more severely for the 30� cone, which has a

draft of less than 2 m. Slamming constraints not only limit

the number of emergences; they also have the benefit of

reducing the buoy strokes and control forces required.

High peak loads can be associated with slamming.

Depending on the slamming constraints, the order of mag-

nitude of the impact forces ranges from small values up to

more than 300 kN for the buoys with diameters of 5 m

considered here. These forces may ultimately lead to fatigue

problems for the structures if no measures are taken. The

magnitude of these forces is significantly influenced by the

buoy shape. According to the formulae of Shiffman and

Spencer [37] and Miloh [27], the difference in peak loads

between the 45� cone and the hemisphere is a factor of 2,

whereas the difference in power absorption is only 4–8%. A

ratio of approximately 1.5 is found between the peak loads

of the 30� and 45� cones. This illustrates the importance of

considering slamming phenomena during the shape design

process, aside from power absorption considerations.

To avoid problems with slamming, attention should be

paid to the buoy geometry: drafts that are too small should

be avoided, as should (local) deadrise angles that are too

small, since small deadrise angles imply large impact

pressures and forces. Secondly, optimal control strategies

should not focus solely on power absorption; they should

also consider emergence risks. Implementing slamming
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constraints in the control strategy might be essential in

order to reduce slamming. Since these constraints are

associated with power losses, the tolerable level of slam-

ming is an economic balance between power absorption

profits and material costs.
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